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This paper is directed toward a health-informed reader who 
is curious about the developments and potential of artificial 
intelligence (AI) in the health space, but could equally be read by 
AI practitioners curious about how their knowledge and methods 
are being used to advance human health. We present a brief, 
equation-free introduction to AI and its major subfields in order 
to provide a framework for understanding the technical context 
of the examples that follow. We discuss the various data sources 
available for questions of health and life sciences, as well as the 
unique challenges inherent to these fields. We then consider 
recent (past five years) applications of AI that have already had 
tangible, measurable impact to the advancement of biomedical 
knowledge and the development of new and improved treatments. 
These examples are organized by scale, ranging from the molecule 
(fundamental research and drug development) to the patient 
(diagnostics, risk-scoring, and personalized medicine) to the group 
(clinical trials and public health). Finally, we conclude with a brief 
summary and our outlook for the future of AI for health. 

Abstract
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Artificial intelligence (AI) is dramatically transforming industries across the board. At its core, AI 
combines elements from math and computer science to make sense of potentially massive and 
complicated datasets. AI techniques can be used to find patterns in seemingly unmanageable data, 
make predictions about the future given past outcomes, extract meaning from large volumes of text, 
and even digest pictures and sounds. We describe in this section some of the main theories and 
methods that underpin the use cases discussed later in the paper.

AI can be divided into a few subsets of techniques, the most mature of which include machine learning, 
deep learning, computer vision, and natural language processing. Although AI is a vast and rapidly 
evolving field, the theory behind it is unified through two mathematical concepts:  Bayesian statistics 
and optimization. Bayesian statistics provide a framework for calculating probabilities by using 
observed data to tune theoretical statistical models. These methods therefore allow data scientists 
to connect real world data with abstract mathematical theories, and provide a high level of flexibility 
in the types and structures of data being modeled. Bayesian networks, for example, provide a way to 
analyze complex networks by representing probabilistic dependencies with graph theory. The other 
big mathematical idea behind AI is optimization, or finding the “best” set of conditions given an end goal. 
Often in AI, the desired result is to capture historical trends — in these cases, optimization methods 
guide algorithms to combine variables in ways that minimize the discrepancies between model 
predictions and past observations, thereby generating rules for making future predictions.  

Introduction 
to artificial 
intelligence

Machine learning (ML) is a subset of AI that encompasses supervised and unsupervised algorithms.  
Unsupervised models find patterns in large or messy data without needing “labels” or defined 
outcomes, while supervised models learn from input/output pairs to classify data into discrete groups 
or predict the outputs from a set of inputs.  

One of the main applications of unsupervised modeling is dimensionality reduction, a set of 
techniques designed to transform datasets with many variables into modified representations with 
significantly fewer features. In some cases, these techniques can take hundreds of dimensions and 
recast the data to tens of features without sacrificing key insights present. Different algorithms achieve 
this, but one of the most popular is principal component analysis, which automatically extracts the 
most important combinations of individual variables to best capture the patterns in the data.



On the supervised side of ML, one of the most general algorithms is linear regression. In linear 
regression, the model adds input variables from historical data together in a way that best reproduces 
continuous outputs. When the model is presented with new data, it makes the most reasonable 
prediction using the combination rules learned from historical information. Like linear regression, 
logistic regression also finds the best combination of variables to predict an outcome, but logistic 
regressions predict binary outcome probabilities, such as the probability of a success versus a failure. 
They accomplish this by transforming input variables such that the output lies between 0 (negative 
outcome) and 1 (positive outcome).  

Recent advances in computing power have allowed for the development of larger, more complex 
models that together make up the subset of AI known as deep learning (DL). DL is largely focused on 
neural networks, which are models built from series of computational “cells” designed to operate like 
a brain.  Each individual cell processes its input in a different way, and groups of cells called “layers” 
work together to store and digest data. These layers then link to subsequent layers and transmit 
information through different firing mechanisms, much like how neurons transmit electrochemical 
signals throughout the nervous system. The end effect is that a network learns to associate inputs with 
outputs. The more layers involved in the network, the “deeper” the model.  
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Neural networks are especially good at learning to store raw nonnumerical data as computer-
readable formats. Recent advances in DL now allow image and video data to be processed through 
convolutional neural networks (CNNs). These networks identify and encode relevant pixel features 
to create numeric representations of images; these advances have led to the emergence of computer 
vision as its own subfield of AI. A related set of neural networks are called recurrent neural networks 
(RNNs); these are well-suited to time-series and text data. In these models, basic neural network cells 
are placed in loops that combine subparts of the raw data. RNNs exploit the order in the source data 
(like word order in text or peaks and valleys in signals) to extract the meaning of the underlying text or 
sequence. CNNs and RNNs can both create meaningful encodings or representations of unstructured, 
complex data; these representations can be fed to other models to ask regression or classification 
questions, ultimately tying the raw sources to useful insight.  

A final rapidly developing domain of AI is natural language processing (NLP). This family of methods 
allows data scientists both to numerically encode and extract insights from raw, unstructured text 
data (for example clinical notes or internet searches). These techniques can be used on their own 
to find useful patterns in, or classify large amounts of, text. They can also be used upstream of a 
machine-learning model by generating features from text data, such as keyword extraction or 
sentiment analysis. NLP methods often leverage neural networks behind the scenes, as they require 
transformation of nonnumeric sequential data into representations that a computer can use.

6       Guidehouse



One of the areas enjoying some of the highest degree of AI innovation is health, taken here to mean 
both life sciences and healthcare delivery. Health is a huge market and is attractive to AI researchers 
given the tremendous volume and variety of health data being produced constantly, as well as the 
potential for improving care. At the same time, the health industry possesses unique challenges to 
overcome before meaningful progress can be achieved.

The scale of data surrounding people’s health is constantly increasing, both in depth and in breadth. AI 
algorithms today can leverage a wide variety of sources, including:

Introduction 
to health data

Patient records: Health encounters, ranging from routine immunizations to emergency 
surgeries, are now digitized and stored in Electronic Health Records (EHRs).

Administrative records: Massive sets of claims from providers to payers tie together patient 
characteristics, diagnoses, prescriptions, and procedures.

Social determinants of health (SDoH): Sources such as the Census Bureau offer 
a complementary lens into patient health journeys by highlighting demographic and 
socioeconomic factors.

Internet of Things (IoT) streams: Wearables and smartphones provide constant and real-
time signals via sensors that track vital signs such as heart rate, activity level, and blood oxygen 
saturation. 

Genotypes: Entire genetic maps, and hence knowledge of molecular predispositions, of patients 
are now routinely available due to the markedly reduced cost of sequencing the human genome 
(down from roughly $100 million in 2001 to less than $1,000 in 2019).1

Omics: Large-scale molecular fingerprints at the cellular and person levels, including, for 
example, libraries of proteins (proteomics), metabolites (metabolomics), and lipids (lipidomics), 
are made possible by the lower costs of data and processing power, coupled with advances in 
biochemistry and related sciences. 

Research and Development (R&D): Academic and commercial entities drive biological 
innovation and breakthroughs every day in the areas of fundamental biology, drug development, 
and translational applications, and in doing so generate large amounts of scientific data.

1 The Cost of Sequencing a Human Genome. National Human Genome Research Institute. https://www.genome.gov/about-genomics/
fact-sheets/Sequencing-Human-Genome-cost (2019).
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This multidimensional slew of data, coupled with modern developments in statistical theory, 
programming, and computational hardware, means that it is a truly exciting time to be applying AI 
to questions of health. That said, it is important to realize that there are some very real challenges 
to accessing the data required for, or developing predictive models about, biomedical problems, 
including:

Regulatory considerations: Protected health information (PHI) is strictly regulated by the 
Health Insurance Portability and Accountability Act in the United States and the General Data 
Protection Regulation in Europe, including criminal penalties and hefty fines for violations, such 
that sharing patient data involves significant logistical overhead.2,3

Scale of data: Health data are huge, and growing faster than any other industry;4 the sizes of 
these data pose expensive barriers to storage and analysis, as the data available to query and 
train a model can outstrip conventional computational memory.

Variety of data: The huge diversity of data sources and file types means that it is difficult to 
develop universal models for storing data in structured and connected databases.

Free text and lack of standardized ontologies: Often the most medically interesting 
information lies in free text (for example, doctor’s notes or clinical trial inclusion/exclusion criteria) 
which, when coupled with the lack of globally approved, freely available ontologies for various 
concepts such as procedures or medical histories, renders it challenging to transform raw data 
into coded structure that AI algorithms can exploit.

Interoperability challenges: The sheer number of competing players in the health market poses 
a blocker to universal interoperability of datasets: For example, it was found that in 2018, health 
systems had on average 18 different EHR vendors.5

Domain knowledge: Health data often refer to concepts that require highly specialized (i.e., 
professional or doctoral) knowledge to fully understand and build useful model features from.

Need for white-box models: To impact patient health, the main contributors to a prediction must 
be known, such that explainable (“white box”) models are desired even more so than in other 
industries; furthermore, healthcare professionals are trained in evidence-based thinking and 
hence are unlikely to trust or use unexplainable predictions.

2 European Parliament. Regulation (EU) 2016/679 on the protection of natural persons with regard to the processing of personal data 
and on the free movement of such data (General Data Protection Regulation – GDPR). International and European Labour Law 958–981 
(2016). doi:10.5771/9783845266190-974.
3 Summary of the HIPAA Privacy Rule. U.S. Department of Health and Human Services. http://www.hhs.gov/ocr/privacy/hipaa/
understanding/summary/index.html (2020).
4 Reinsel, D., Gantz, J. & Rydning, J. Data Age 2025: The Digitization of the World From Edge to Core. Int. Data Corp. 28 (2018).
5 Sullivan, T. Why EHR data interoperability is such a mess in 3 charts. Healthcare IT News. https://www.healthcareitnews.com/news/
why-ehr-data-interoperability-such-mess-3-charts (2018).
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The above considerations are by no means meant to be exhaustive of the data sources and challenges 
in the health space, but rather are included to introduce and highlight main themes. The remainder of 
this paper offers a sample of recent use cases in which AI has had measurable impact, organized in 
order of increasing scale from the molecule to the community.
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Applied to the nanoscopic and microscopic worlds, AI can help scientists push our understanding 
of biology and generate novel therapies against diseases. At this scale, algorithms can make use 
of the massive amounts of data generated by researchers to learn mechanisms and propose new 
hypotheses and potential treatments.

Fundamental research
One area in which AI, particularly deep learning, has made its mark is protein folding. Proteins are 
the components of cells that allow organisms to function and are responsible for an astoundingly 
diverse set of biological tasks, from immune responses to regulation of cellular division. Molecularly, 
proteins are strings of building blocks called amino acids, and these strings must fold into specific 
three-dimensional shapes, called native states, before they are biologically active. The thermodynamic 
hypothesis broadly states that a protein’s specific sequence of amino acids determines its native 
state; in other words, one can predict a protein’s structure just by knowing its sequence.6 This is 
very medically relevant given that 
specific sites on proteins are often 
the target of drugs, and that many 
debilitating diseases of aging such as 
Alzheimer’s or Parkinson’s are linked 
to improperly shaped proteins.7

In practice, developing scientific methods to predict protein folding has proven an immense challenge.  
While significant progress has been made in the past few decades, state-of-the-art methods still 
cannot fully predict shape from sequence. One of the most promising recent developments, however, 
lies in the use of deep learning and neural networks to tackle this problem. In 2018, Google DeepMind 
uncovered AlphaFold, a DL pipeline that uses several different neural networks to predict the structure 
of a protein given a sequence input. It does this in a series of steps that includes comparing the test 
sequence to a library of known sequences and structures, guessing reasonable conformations for 
subsets of the input protein, combining the guesses together in different ways, and then figuring out 
what the best-guess shape is. The accuracy of the results roughly doubled the trend of progress in 
the field.8,9  In this case, AI helped researchers get closer to achieving their goal of understanding a 
protein’s shape based on its structure, which would be of tremendous value for rational drug design in 
which molecules are generated to target specific geometries of specific molecular entities.

Molecules:  
AI for 
understanding 
biology and 
developing 
therapies

6 Govindarajan, S. & Goldstein, R. A. On the thermodynamic hypothesis of protein folding. Proc. Natl. Acad. Sci. 95, 5545–5549 (1998).
7 Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).
8 AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 35, 4862–4865 (2019).
9 Evans, R. et al. De novo structure prediction with deep-learning based scoring. Thirteen. Crit. Assess. Tech. Protein Struct. Predict. 
Abstr. 1–4 (2018).



Drug development
A particularly active area for AI within health is the drug development process, with the number of 
funded startups active (currently at about 186) in this sphere growing about 400% between November 
2017 and January 2020.10 The opportunities for application of AI span the entire development pipeline, 
from fundamental chemical reactions to experimental design to identification of new therapies.    
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In 2019, scientists at Pfizer and researchers at 
the University of Cambridge developed a neural 
network that could make synthesis predictions 
for pharmacologically relevant compounds. Their 
tool works both for the problems of reaction 
prediction (forward from reactants to products) 
and retrosynthetic analysis (backward from 
products to reactants), and their method beat 
professional human chemists by achieving an 
accuracy of about 90% for well-represented 
reactions (versus about 80% human accuracy). 
Much like the AlphaFold network learns protein 
folds from protein sequences, this reaction 
network learns the properties of specific 
reactants that lead to specific products, and vice 
versa, leveraging the large amount of knowledge 
generated by organic chemists in the past 
few centuries.11,12  By automating the design of 
chemical reactions, AI could help pharmaceutical 
companies design drug syntheses and optimize 
drug production processes.

On a more applied level, in 2018 a team of 
researchers from the Universities of Cambridge, 
Manchester, and Aberystwyth discovered 
novel antimalarial properties of triclosan, an 
antibacterial compound found in products 
such as toothpaste. This was achieved using an 
AI-powered robot named Eve that automated 
the scientific process by using ML to generate 
hypotheses, run automated experiments in yeast 
cells, and analyze the results. Behind the scenes, 
Eve uses data from positive experiments (hits) 
to run linear regressions and learn quantitative 
structure-activity relationships that quantify 
a compound’s activity in a specific assay, 
given its chemical properties such as size or 
hydrophobicity. Triclosan works by inhibiting two 
different malarial enzymes, including one that is 
the target of the current standard-of-care drug 

10 Smith, Simon. 186 Startups Using Artificial Intelligence in Drug Discovery. BenchSci. https://blog.benchsci.com/startups-using-artificial-intel-
ligence-in-drug-discovery (2020).
11 Schwaller, P. et al. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Cent. Sci. 5, 1572–1583 
(2019).
12 Lee, Alpha A. et al. Molecular transformer unifies reaction prediction and retrosynthesis across pharma chemical space. Chem. Commun. 55, 
12152–12155 (2019).
13 Bilsland, E. et al. Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biol. 3, 120158 (2013).
14 Bilsland, E. et al. Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan. Sci. Rep. 8, 1038 
(2013).
15 AI ‘scientist’ finds that toothpaste ingredient may help fight drug-resistant malaria. University of Cambridge Research News. https://www.
cam.ac.uk/research/news/ai-scientist-finds-that-toothpaste-ingredient-may-help-fight-drug-resistant-malaria (2018).
16 Zhang, L., Rodrigues, L. O., Narain, N. R. & Akmaev, V. R. bAIcis: A Novel Bayesian Network Structural Learning Algorithm and Its  
Comprehensive Performance Evaluation Against Open-Source Software. J. Comput. Biol. 26, 1–11 (2019).
17 Our Approach. BERG https://www.berghealth.com/research/healthcare-professionals (2020).
18 Hendifar, A. E. et al. Phase I study of BPM 31510 in advanced solid tumors: Updated analysis of a novel treatment with promising activity. J. 
Clin. Oncol. 30, 3015–3015 (2012).

pyrimethamine. These two different mechanisms 
of action render triclosan a “polypharmacologic” 
compound since it can target the malaria 
parasite at both the blood and liver stages of 
its life cycle. There is a growing need for such 
new therapeutic discoveries as drug resistance 
against standard medicines, like pyrimethamine, 
grows in endemic regions such as Africa.13–15  

As a final example, BERG, a clinical-stage 
biotechnology startup near Boston, identified 
a candidate drug for advanced pancreatic 
cancer that in November 2017 was awarded 
orphan-drug designation by the Food and Drug 
Administration (FDA) and in summer 2019 
completed a Phase 2 trial. This drug works by 
undoing metabolic changes associated with 
cancer at the cellular level to restore normal 
energy pathways, thereby turning normal 
protective mechanisms such as apoptosis 
(controlled, prophylactic cell death) back 
on. BERG has developed a technology that 
combines huge amounts of patient sample data 
(including genomics, proteomics, metabolomics 
and lipidomics) with medical data such as EHR 
information to learn patient-level biological 
graphs using a technique called Bayesian 
networks. From these graph representations 
of patients, the team can identify disease 
biomarkers and critical molecules against which 
they can virtually screen therapies for toxicity 
and efficacy by seeing where the biological 
networks tend to bunch up or by seeing how 
diseased networks differ from healthy networks. 
Through their AI-based pipeline, then, they can 
reverse the hypothesis generation framework 
by going from patient-level results to biological 
mechanisms that, because of their empirically 
derived natures, are likely to succeed in the 
clinic.16–18
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19 FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. U.S. Food and Drug Ad-
ministration. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-de-
tect-certain-diabetes-related-eye.
20 Gulshan, V. et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus 
Photographs. JAMA 316, 2402 (2016).
21 Tison, G. H. et al. Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch. JAMA Cardiol. 3, 409 (2018).

Moving up to the person scale, AI is increasingly 
being applied to the patient experience, 
including risk prediction, diagnosis, and 
treatment. New algorithms exploit the recent 
explosion of patient health data availability to 
generate predictions that complement services 
from trained providers.

Patients: 
AI for 
predicting 
disease and 
improving care 

Diagnostics and outcome risks
In April 2018, the software system IDx-DR became the first fully autonomous AI system to gain 
FDA approval. IDx-DR reads patient eye scans and calculates the probability that the scans show 
evidence of diabetic retinopathy, a disease of the small blood vessels in the eye due to diabetes and 
the leading cause of blindness for working-age Americans. The software triages patients into a high-
risk group, who are then referred to ophthalmic specialists, and a low-risk group, who are scheduled 
for rescreening in a year. Much like an ophthalmologist, the algorithm functions by learning how to 
read pictures of retinas and what features of the scans indicate disease by using a convolutional 
neural network. With 30 million Americans suffering from diabetes, and about 30% of them affected 
by diabetic retinopathy, being able to accurately score patients on risk results in greater efficiency of 
specialty care for only those who require it.19,20

Another application of AI-based diagnosis is from integration with IoT devices, namely the Apple 
Watch. Researchers at the University of California, San Francisco in 2018 conducted experiments to 
see if this wearable coupled with a deep learning app could diagnose atrial fibrillation (AF). AF is an 
anomalous heart rhythm and is the leading cause of stroke. Traditional diagnosis involves a 12-lead 
electrocardiogram read by a specialist, but the study authors showed that using heart rate and step 
data from the watch sensor could train a recurrent neural network to be able to identify AF episodes. 
Here the software teaches itself to read heart scans from lots of patient scans, finding both normal 
cardiac patterns and anomalies associated with AF.21 By moving the point of care from the clinic to 
wherever the patient is, AI can deliver the benefits of constant monitoring of at-risk individuals without 
incurring the costs associated with traveling to, and being seen by, scarce medical providers.
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AI is also being used to calculate the risk of 
patients developing certain conditions. One 
example comes from the field of cardiology: 
scientists at the University of Nottingham in 2017 
were able to use EHR data and demographic 
information on patients to predict the risk of 
cardiovascular events. They tried several of 
the standard ML techniques, including logistic 
regression and neural networks, with the latter 
being the most successful, and all beating 
the standard algorithm used by the American 
College of Cardiology.22  While preliminary, 
these results demonstrate that the information 
present in clinical notes, combined with social 
determinants of health, can teach relatively simple 
models to be as predictive as trained experts 
in triaging patients. Freeing up specialists’ time 
by performing preliminary triaging, scaled up 
by a doctor’s entire patient load, can have real 
measurable impact on provider economics and 
efficiency by increasing the time, and hence 
quality of care, the provider is able to deliver to 
their most at-risk patients.

Personalized medicine 
Developments in genomics and medicine in 
the past century have highlighted the fact that 
many disorders, including rare and genetic 
diseases, are not responsive to traditional one-
size-fits-all therapies.  In other words, the same 
drug on two different patients presenting with 
similar symptomologies can have very different 
effects. Furthermore, quickly mutating diseases 
such as aggressive cancers or antibacterial-
resistant infections require new interventions 
as the disease evolves.  To meet such needs, 
personalized (or precision) medicine has evolved 
to provide targeted therapies that work for 
specific patient situations.  The fundamental 
challenge of personalized medicine is to predict 
or develop the most effective intervention, given 
data (medical history, diagnostics, omics, etc.) 
about a patient and their disease. As such, AI finds 
natural applications here.  

Alcoholism poses a major burden, affecting about 
5% of the global population, yet its psychiatric 
etiology is complex and not completely 
understood. There are currently only a handful 
of medicines that are approved to treat alcohol 

22 Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M. & Qureshi, N. Can machine-learning improve cardiovascular risk prediction using routine 
clinical data? PLOS ONE 12, e0174944 (2017).
23 Hinton, D. J. et al. Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects. Sci. Rep. 7, 
2496 (2017).

dependence, but none are extremely effective at 
a large scale. As an application of personalized 
medicine, researchers at the Mayo Clinic 
performed a study in 2017 in which they used 
ML to tie patient metabolomics to their likelihood 
to respond to acamprosate, one of the drugs 
approved for treatment of alcoholism. They 
measured patient demographics, metabolite 
levels, and baseline alcohol cravings before 
treatment, and then correlated these variables 
to the probability of response to treatment by 
using logistic regression. The study was able 
to generate predictive models with reasonable 
predictive power and showed that levels of 
the amino acid aspartate was a consistently 
good predictor of treatment effectiveness.23 
This study demonstrates that AI can generate 
useful personalized predictions about patients’ 
individual responses to interventions, thereby 
increasing quality of care by avoiding spending 
time and money on therapies unlikely to be 
effective.  

In 2011, the U.S. Department of Veterans Affairs 
(VA) launched the Million Veteran Program, 
an effort to collect genomic information on 
a million veterans so that these data can be 
correlated with information on military service, 
lifestyle, and medical care to better understand 
the interplay between genotype, environment, 
and phenotype. As the United States’ largest 
integrated health system and the world’s largest 
collector of genomic data linked to health 
data, the VA has offered the AI community a 
tremendous opportunity, and recently efforts 
have started to pay off. In 2018, researchers 
from around the world representing institutions 
such as Harvard, Stanford, and Cambridge 
Universities worked with VA scientists to help 
link genomic data on hundreds of thousands of 
veterans to their lipid levels, gleaning key insights 
into genetic underpinnings of cardiovascular 
and metabolic diseases. Several ML techniques 
were used in this work, including principal 
component analysis (PCA) to deal with the 
vast amounts of data present in a patient’s 
genome. By representing patient ancestries as 
PCA-reduced variables of genomes, combined 
with lab results on lipid levels, EHR records of 
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cardiovascular disease, and demographic data, the team was able to use logistic regression to extract 
the effects of specific genetic mutations on coronary artery disease (CAD). They identified that the 
inactivation of one gene, PDE3B, was associated with lower risk of CAD. The effects of inactivating this 
gene are strikingly similar to the molecular mechanism of action of cilostazol, a drug that is approved 
by the FDA for the treatment of insufficient blood flow in the legs, but not for CAD. By making this 
connection, uncovered through ML techniques on genomic and health data, the researchers then 
suggested that cilostazol may be a therapeutic possibility against CAD,24,25 and recent clinical studies 
have emerged with results supporting this hypothesis.26,27 This case study shows the potential of 
applying AI to linked genomic and health data to understand at an individual level the genetic driving 
forces behind disease, and further to generate new drug candidates from existing medicines.  

24 Million Veteran Program (MVP). U.S. Department of Veterans Affairs. https://www.research.va.gov/mvp/ (2017).
25 Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523 
(2018).
26 Lee, D.-H. et al. Effect of cilostazol, a phosphodiesterase-3 inhibitor, on coronary artery stenosis and plaque characteristics in patients with 
type 2 diabetes: ESCAPE study. Diabetes Obes. Metab. 21, 1409–1418 (2019).
27 Chao, T.-H., Tseng, S.-Y., Liu, P.-Y. & Li, Y.-H. P1929 A randomized controlled trial evaluating outcome impact of cilostazol in patients with 
coronary artery disease and at a high risk of cardiovascular disease. Eur. Heart J. 40, ehz748–0676 (2019).
28 Harrer, S., Shah, P., Antony, B. & Hu, J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol. Sci. 40, 577–591 (2019).
29 Fogel, D. B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp. Clin. 
Trials Commun. 11, 156–164 (2018).

The last level of scale we consider here is the group, or how AI can support cohort and population 
outcomes. Two areas of development include clinical trials and public health; in each of these contexts, 
AI models are being used to make sense of complicated, disparate sets of data about individuals to 
make predictions that can benefit larger groups.

Clinical trials
Clinical trials are an enormous business operation:  In 2013, Phase 3 trials in the United States 
alone cost around $10 billion. The FDA approval process is strict and rigorous for good reason, but 
this means that each new therapy costs about $1.5 billion-$2 billion to bring to market when one 
accounts for R&D costs and the costs of failed trials. In the end, only 10% of candidate therapies 
that make it to Phase 1 make it to market, and one of the major factors for trial failure is the inability to 
recruit enough eligible patients who do not attrite before trial completion.28,29  

Groups: 
AI for 
optimizing 
clinical 
trials and 
safeguarding 
public health
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The United States has a central repository of all 
clinical trials, clinicaltrials.gov, but this resource 
doesn’t translate directly into streamlined 
enrollment, in part because the inclusion/
exclusion trial criteria are in free text, use medical 
jargon, and do not follow a standardized ontology. 
To address these problems, researchers 
at Janssen Pharmaceuticals and Columbia 
University used natural language processing 
(NLP) techniques to develop the Criteria2Query 
algorithm, which takes as input a free-text 
description of clinical trial eligibility and outputs 
a standardized collection of entities (condition, 
drug, measurement, procedure, or observation), 
attributes (values and time occurrences) and 
negation statuses (whether presence of the 
entity/attribute pair determines eligibility or 
ineligibility).  For example, inputting “13-15 years 
old” would yield an eligibility entity of “age” with 
value attributes “13-15 years.”  The algorithm also 
decodes medical abbreviations and can go from 
a free-text description to a standard ontological 
entry.  For example, “AD” maps to “Alzheimer’s 
Disease” and then matches the International 
Classification of Diseases-Tenth Revision (ICD-
10) code G30. Criteria2Query does this through 
an intricate set of NLP steps, including paragraph 
and sentence parsing, named entity recognition, 
negation detection, relation extraction, logic 
detection, and attribute normalization.30 By using 
AI to translate unstructured criteria defining each 
of the many clinical trials into well-formatted and 
standardized outputs, tools can be developed 
to help patients and providers find experimental 
treatments through large-scale querying of 
available trials.

Besides simply cleaning and understanding 
eligibility criteria, a major challenge of trial design 
is the actual matching of eligible patients to 
relevant trials. Deep 6 AI is a California-based 
startup working to address this need. Its team 
accomplishes this by using NLP and ML to sift 
through data buried in patient health records, 
analyzing both structured (diagnosis codes, 
procedure codes, etc.) and unstructured (doctor 
notes, pathology reports, etc.) information to 
reconcile disparate sources of health indicators 
into one multidimensional representation of the 
clinical state of a patient. Having a collected 

30 Yuan, C. et al. Criteria2Query: a natural language interface to clinical databases for cohort definition. J. Am. Med. Inform. Assoc. 26, 
294–305 (2019).
31 Woo, M. Trial by artificial intelligence. Nature 573, S100–S102 (2019).
32 How It Works. Deep 6 AI https://deep6.ai/how-it-works (2020).
33 How We Do It. Trials.ai https://www.trials.ai/ (2020).

view of a patient then allows them to identify 
possibilities for intervention, including for 
conditions not present explicitly in patient data. 
Their algorithms match these opportunities 
to currently available trials, thereby greatly 
speeding up the patient recruitment process; in 
one hour they were able to find 16 subjects for a 
trial, whereas a typical recruitment process had 
taken six months to find two patients.31,32

A last example in the context of clinical 
trials is the application of AI to design of the 
interventions themselves. Clinical trial design 
involves many simultaneously moving parts, 
such as defining appropriate subject inclusion/
exclusion criteria or trial endpoints. These 
choices are often delicate balancing acts: for 
example, if a trial’s eligibility is too strict, not 
enough patients will be recruited and hence 
intervention significance will be difficult to 
attain because of low statistical power. On the 
other hand, if the eligibility is too lenient, the 
trial will be flooded by subjects who may not 
respond as predicted and significance will be 
difficult to attain due to seemingly low effect 
size, in addition to increased trial costs. As 
a result, an efficacious drug may appear not 
to be efficacious. To address this, a startup 
called trials.ai in San Diego is using ML and 
NLP techniques to optimize the design of the 
trial protocols. Their product mines data such 
as published journal articles and proprietary 
pharmaceutical or medtech client data to, for 
example, suggest appropriate thresholds for 
patient recruitment criteria.31,33 By being able to 
fine-tune clinical trials to optimize economics 
and design for the most relevant patient 
populations, AI has the potential to help new 
drugs get to market faster and cheaper.
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34 Sadilek, A. et al. Machine-learned epidemiology: real-time detection of foodborne illness at scale. Npj Digit. Med. 1, 36 (2018).
35 FluSight: Flu Forecasting. U.S. Centers for Disease Control and Prevention https://www.cdc.gov/flu/weekly/flusight/index.html.
36 Osthus, D. & Moran, K. R. Multiscale Influenza Forecasting. ArXiv: 1909.13766 [stat.AP] (2019).

Public health
The potential use cases for AI in health do not stop at the cohort level — they can also be applied to 
much larger groups such as city, or even national, populations to assist public health efforts.

Google teamed up with researchers from Harvard and the public health departments of Chicago 
and Las Vegas between 2016-2017 to predict sources of food-borne illnesses and identify health 
violations in restaurants from Google search queries. To do so, the team created a two-step 
model. In the first step, a model uses NLP to encode the search strings followed by supervised ML 
classification to predict whether the query was about food-borne illness. In the second step, the 
model uses location data from opted-in users to estimate which restaurants the user had visited. 
Combining the web search with the location model, and aggregating over all the unique users, 
allowed for a prediction of which restaurants were correlated with searches likely to indicate a 
food-borne pathogen. Leveraging these predictions, both public health departments increased their 
inspection efficiency by more than a factor of 2 over their typical routine site inspection processes.34 
Public health departments are often underfunded and understaffed, so unlocking such efficiency 
gains with AI can provide measurable benefits to the community by freeing up public health officials 
to focus their time on other high-impact activities.

AI methods have also found application in epidemic surveillance and forecasting. Through their 
FluSight challenge, the U.S. Centers for Disease Control and Prevention (CDC) has teamed up with 
academic and commercial partners to use influenza incidence data collected at reporting sites 
across the country to forecast the flu season. The winning team in the 2018 season was a group 
from the U.S. Department of Energy’s Los Alamos National Laboratory that used Bayesian statistical 
models of flu infection time series to learn trends at the various geographical levels. Importantly, 
their model was able to beat the other competitors, some of whose models used additional data 
sources, without incorporating orthogonal information such as weather patterns or web traffic. This 
demonstrates that historical information, combined with innovative ML, is sufficient to generate 
actionable public health predictions and provide huge value to constituents. The ability to forecast 
influenza spread can allow the CDC to optimally time vaccination drives, prepare antiviral supply 
chains ahead of peak clinical need, and dynamically allocate resources to regions of the country 
most at risk for epidemic.35,36
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At its core, AI is a family of methods that find patterns in, and make predictions about, data. Advances 
in the biomedical sciences have vastly increased the scale and variety of data available in the health 
and life sciences sectors, while parallel advances in data science and computing have created new 
algorithms to process, analyze, and extract measurable insight from various sources of information. 
While there are very real challenges to overcome when working with health data, the potential for AI 
to advance medical knowledge and care is vast and present at all scales, from the molecule to the 
community. By leveraging AI, providers can triage patients to focus their time on more difficult cases, 
life scientists can discover new medicines, patients can find relevant clinical trials, and public health 
agencies can more proactively serve their constituents. We have provided here examples of all these 
applications of AI from the past five years, and we anticipate that opportunities for AI to improve health 
will continue to grow and develop in the near future.

While there are many exciting developments underway and on the horizon for AI in health, it is 
important to realize that AI is not a panacea. Namely the following limitations are especially important to 
keep in mind:

Conclusion 
and outlook

Biology will not be fully solved by models. Models can only find patterns in already observed 
measurements or correlate historical inputs with outputs, so they will never displace the critical 
role that researchers have in generating and testing novel scientific hypotheses.

Clinician expertise and experience will not be supplanted by robot doctors. Medical care 
demands empathy and a mastery of understanding all aspects of the situational nuances of each 
patient; no model can ever replicate these skills that experience in patient care alone can provide.

Patient health trajectories will not be fully and perfectly predictable. An individual’s 
environment and their personal choices are a priori unknowable but carry tremendous weight 
in affecting their health, implying that computational algorithms will never be able to produce 
deterministic, exact forecasts.

AI models will not be fully explainable. Often the most sophisticated, powerful AI models 
suffer from a lack of transparency in how exactly they use data to make predictions; in health this 
is a salient shortcoming, as it is difficult to intervene if the root causes of a disease state are not 
known.

AI technology will not be free of bias or equitably accessible. The output of an AI model 
always reflects the input data, so model forecasts necessarily reflect the biases inherent to the 
data being collected; put another way, until medical care is equally accessible to all, AI tools 
will only accurately predict outcomes for those populations able to access care and generate 
training data in the first place.
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Despite the limitations of the above points, AI is well-poised to address many current needs in 
medicine and the life sciences. We believe the following use cases in particular will benefit from the 
application of AI:

New, different data will provide a more holistic view of patients. Developments in deep 
learning especially are increasing the kinds of data that are analyzable (text, images, sounds, 
time-series, etc.), and an increasing focus on health data quality and interoperability will make it 
easier to connect different dots of a patient’s journey together into a multidimensional picture of 
health.

Algorithms will triage patients into risk groups, thereby more efficiently allocating care 
and augmenting provider judgment. FDA approvals for diagnostic algorithms will increase, and 
these tools will optimize the medical care supply chain by routing patients to the appropriate level 
of treatment and specialization; furthermore, they will interface with EHRs to highlight particular 
risk areas, help providers follow ever-evolving standards of care and place importance on 
specific areas of preventive care that could prevent especially likely future illness.

Old drugs will be repurposed for new indications. The explosions in granular data on patient 
phenotypes and our increased understanding of microscopic biochemical pathways will help life 
scientists revisit existing therapies in the context of new diseases to use old drugs in new ways.

New, more precise medications will come to market more quickly and cheaply. The 
increased resolution in patient biomarkers will enable drugs to be developed for specific disease 
state subpopulations, and improvements in clinical trial design will push these new interventions 
to the clinic more easily.

Pharmaceutical interventions will be judged by their effectiveness, not their efficacy.  With 
more specific trials being undertaken and more real-world evidence being available, the success 
of a treatment will be determined not by whether a trial can be designed to demonstrate its 
effects, but rather by whether its introduction to the market positively impacts population health. 
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