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Abstract

This paper is directed toward a health-informed reader who

is curious about the developments and potential of artificial
intelligence (Al) in the health space, but could equally be read by

Al practitioners curious about how their knowledge and methods
are being used to advance human health. We present a brief,
equation-free introduction to Al and its major subfields in order

to provide a framework for understanding the technical context

of the examples that follow. We discuss the various data sources
available for questions of health and life sciences, as well as the
unique challenges inherent to these fields. We then consider
recent (past five years) applications of Al that have already had
tangible, measurable impact to the advancement of biomedical
knowledge and the development of new and improved treatments.
These examples are organized by scale, ranging from the molecule
(fundamental research and drug development) to the patient
(diagnostics, risk-scoring, and personalized medicine) to the group
(clinical trials and public health). Finally, we conclude with a brief
summary and our outlook for the future of Al for health.
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Introduction

to art|f|0|a| Artificial intelligence (Al) is dramatically transforming industries across the board. At its core, Al
= = combines elements from math and computer science to make sense of potentially massive and
I ntel I I gence complicated datasets. Al techniques can be used to find patterns in seemingly unmanageable data,

make predictions about the future given past outcomes, extract meaning from large volumes of text,
and even digest pictures and sounds. We describe in this section some of the main theories and
methods that underpin the use cases discussed later in the paper.

Al can be divided into a few subsets of techniques, the most mature of which include machine learning,
deep learning, computer vision, and natural language processing. Although Al is a vast and rapidly
evolving field, the theory behind it is unified through two mathematical concepts: Bayesian statistics
and optimization. Bayesian statistics provide a framework for calculating probabilities by using
observed data to tune theoretical statistical models. These methods therefore allow data scientists

to connect real world data with abstract mathematical theories, and provide a high level of flexibility

in the types and structures of data being modeled. Bayesian networks, for example, provide a way to
analyze complex networks by representing probabilistic dependencies with graph theory. The other
big mathematical idea behind Al is optimization, or finding the “best” set of conditions given an end goal.
Oftenin Al, the desired result is to capture historical trends — in these cases, optimization methods
guide algorithms to combine variables in ways that minimize the discrepancies between model
predictions and past observations, thereby generating rules for making future predictions.

Text generation Deep learning
Question answering Natural

Context extraction Language Unsupervised j— Machine Learning
Classification Processing Supervised 1 }GJ%

Machine Translation

Speechtotext e
P Speech Planning Artl_f|c|a|
Texttospeech Intelligence
Expert Systems
Ima iti
e e o T Vision
Machine vision

Machine learning (ML) is a subset of Al that encompasses supervised and unsupervised algorithms.
Unsupervised models find patterns in large or messy data without needing “labels” or defined
outcomes, while supervised models learn from input/output pairs to classify data into discrete groups
or predict the outputs from a set of inputs.

One of the main applications of unsupervised modeling is dimensionality reduction, a set of
techniques designed to transform datasets with many variables into modified representations with
significantly fewer features. In some cases, these techniques can take hundreds of dimensions and
recast the data to tens of features without sacrificing key insights present. Different algorithms achieve
this, but one of the most popular is principal component analysis, which automatically extracts the
most important combinations of individual variables to best capture the patterns in the data.
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Onthe supervised side of ML, one of the most general algorithms is linear regression. In linear
regression, the model adds input variables from historical data together in a way that best reproduces
continuous outputs. When the model is presented with new data, it makes the most reasonable
prediction using the combination rules learned from historical information. Like linear regression,
logistic regression also finds the best combination of variables to predict an outcome, but logistic
regressions predict binary outcome probabilities, such as the probability of a success versus afailure.
They accomplish this by transforming input variables such that the output lies between O (negative
outcome) and 1 (positive outcome).

Linear regression Logistic regression
é % Success
*5' 8 _____________
o 5
e}
Key
Failure Historical data
Trained Model
Input Input

Recent advances in computing power have allowed for the development of larger, more complex
models that together make up the subset of Al known as deep learning (DL). DL is largely focused on
neural networks, which are models built from series of computational “cells” designed to operate like
abrain. Eachindividual cell processesiits input in a different way, and groups of cells called “layers”
work together to store and digest data. These layers then link to subsequent layers and transmit
information through different firing mechanisms, much like how neurons transmit electrochemical
signals throughout the nervous system. The end effect is that a network learns to associate inputs with
outputs. The more layers involved in the network, the “deeper” the model.

AlforHealth 5
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Neural networks are especially good at learning to store raw nonnumerical data as computer-
readable formats. Recent advances in DL now allow image and video data to be processed through
convolutional neural networks (CNNs). These networks identify and encode relevant pixel features
to create numeric representations of images; these advances have led to the emergence of computer
vision as its own subfield of Al. A related set of neural networks are called recurrent neural networks
(RNNSs); these are well-suited to time-series and text data. In these models, basic neural network cells
are placed inloops that combine subparts of the raw data. RNNs exploit the order in the source data
(like word order in text or peaks and valleys in signals) to extract the meaning of the underlying text or
sequence. CNNs and RNNs can both create meaningful encodings or representations of unstructured,
complex data; these representations can be fed to other models to ask regression or classification
questions, ultimately tying the raw sources to useful insight.

A final rapidly developing domain of Al is natural language processing (NLP). This family of methods
allows data scientists both to numerically encode and extract insights from raw, unstructured text
data (for example clinical notes or internet searches). These technigues can be used on their own

to find useful patternsin, or classify large amounts of, text. They can also be used upstream of a
machine-learning model by generating features from text data, such as keyword extraction or
sentiment analysis. NLP methods often leverage neural networks behind the scenes, as they require
transformation of nonnumeric sequential data into representations that a computer can use.



Introduction
to health data

One of the areas enjoying some of the highest degree of Alinnovation is health, taken here to mean
both life sciences and healthcare delivery. Health is a huge market and is attractive to Al researchers
given the tremendous volume and variety of health data being produced constantly, as well as the
potential for improving care. At the same time, the health industry possesses unique challenges to
overcome before meaningful progress can be achieved.

The scale of data surrounding people’s health is constantly increasing, both in depth and in breadth. Al
algorithms today can leverage a wide variety of sources, including:

Patient records: Health encounters, ranging from routine immunizations to emergency
surgeries, are now digitized and stored in Electronic Health Records (EHRs).

Administrative records: Massive sets of claims from providers to payers tie together patient
characteristics, diagnoses, prescriptions, and procedures.

Social determinants of health (SDoH): Sources such as the Census Bureau offer
acomplementary lens into patient health journeys by highlighting demographic and
socioeconomic factors.

Internet of Things (loT) streams: Wearables and smartphones provide constant and real-
time signals via sensors that track vital signs such as heart rate, activity level, and blood oxygen
saturation.

Genotypes: Entire genetic maps, and hence knowledge of molecular predispositions, of patients
are now routinely available due to the markedly reduced cost of sequencing the human genome
(down from roughly $100 millionin 2001 to less than $1,000 in 2019)!

Omics: Large-scale molecular fingerprints at the cellular and person levels, including, for
example, libraries of proteins (proteomics), metabolites (metabolomics), and lipids (lipidomics),
are made possible by the lower costs of data and processing power, coupled with advancesin
biochemistry and related sciences.

Research and Development (R&D): Academic and commercial entities drive biological
innovation and breakthroughs every day in the areas of fundamental biology, drug development,
and translational applications, and in doing so generate large amounts of scientific data.

-A--- Data for Health Preditction

EHR & Claims Genotypes & Omics SDoH
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Research & Development Internet of Things (loT) Streams 0
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'The Cost of Sequencing a Human Genome. National Human Genome Research Institute. https://www.genome.gov/about-genomics/
fact-sheets/Sequencing-Human-Genome-cost (2019).
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This multidimensional slew of data, coupled with modern developments in statistical theory,
programming, and computational hardware, means that it is a truly exciting time to be applying Al
to questions of health. That said, it isimportant to realize that there are some very real challenges
to accessing the data required for, or developing predictive models about, biomedical problems,
including:

Regulatory considerations: Protected health information (PHI) is strictly regulated by the
Health Insurance Portability and Accountability Act in the United States and the General Data
Protection Regulation in Europe, including criminal penalties and hefty fines for violations, such
that sharing patient data involves significant logistical overhead.?®

Scale of data: Health data are huge, and growing faster than any other industry;* the sizes of
these data pose expensive barriers to storage and analysis, as the data available to query and
train a model can outstrip conventional computational memory.

Variety of data: The huge diversity of data sources and file types means that it is difficult to
develop universal models for storing data in structured and connected databases.

Free text and lack of standardized ontologies: Often the most medically interesting
information lies in free text (for example, doctor’s notes or clinical trial inclusion/exclusion criteria)
which, when coupled with the lack of globally approved, freely available ontologies for various
concepts such as procedures or medical histories, renders it challenging to transform raw data
into coded structure that Al algorithms can exploit.

Interoperability challenges: The sheer number of competing players in the health market poses
a blocker to universal interoperability of datasets: For example, it was found that in 2018, health
systems had on average 18 different EHR vendors.®

Domain knowledge: Health data often refer to concepts that require highly specialized (i.e.,
professional or doctoral) knowledge to fully understand and build useful model features from.

Need for white-box models: To impact patient health, the main contributors to a prediction must
be known, such that explainable (“white box”) models are desired even more so than in other
industries; furthermore, healthcare professionals are trained in evidence-based thinking and
hence are unlikely to trust or use unexplainable predictions.

2European Parliament. Regulation (EU) 2016/679 on the protection of natural persons with regard to the processing of personal data
and on the free movement of such data (General Data Protection Regulation — GDPR). International and European Labour Law 958-981
(2016). doi:10.5771/9783845266190-974.

3Summary of the HIPAA Privacy Rule. U.S. Department of Health and Human Services. http://www.hhs.gov/ocr/privacy/hipaa/
understanding/summary/index.html (2020).

“Reinsel, D., Gantz, J. & Rydning, J. Data Age 2025: The Digitization of the World From Edge to Core. Int. Data Corp. 28 (2018).

5Sullivan, T. Why EHR data interoperability is such a mess in 3 charts. Healthcare IT News. https://www.healthcareitnews.com/news/
why-ehr-data-interoperability-such-mess-3-charts (2018).
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The above considerations are by no means meant to be exhaustive of the data sources and challenges
in the health space, but rather are included to introduce and highlight main themes. The remainder of
this paper offers a sample of recent use cases in which Al has had measurable impact, organized in
order of increasing scale from the molecule to the community.
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Applied to the nanoscopic and microscopic worlds, Al can help scientists push our understanding
of biology and generate novel therapies against diseases. At this scale, algorithms can make use
of the massive amounts of data generated by researchers to learn mechanisms and propose new
hypotheses and potential treatments.

Fundamentalresearch

One areain which Al, particularly deep learning, has made its mark is protein folding. Proteins are
the components of cells that allow organisms to function and are responsible for an astoundingly
diverse set of biological tasks, from immune responses to regulation of cellular division. Molecularly,
proteins are strings of building blocks called amino acids, and these strings must fold into specific
three-dimensional shapes, called native states, before they are biologically active. The thermodynamic
hypothesis broadly states that a protein’s specific sequence of amino acids determines its native
state; in other words, one can predict a protein’s structure just by knowing its sequence.® Thisis
very medically relevant given that

specific sites on proteins are often oy Protein Folding :>N/\

the ’Fgrg.et of Qrugs, and the.it manly Unfolded » @3 Neural Network # Folded ¢™ _"T'})
debilitating diseases of aging such as & ,/\‘cio
Alzheimer’s or Parkinson’s are linked oo LY
toimproperly shaped proteins.”

In practice, developing scientific methods to predict protein folding has proven animmense challenge.
While significant progress has been made in the past few decades, state-of-the-art methods still
cannot fully predict shape from sequence. One of the most promising recent developments, however,
lies in the use of deep learning and neural networks to tackle this problem. In 2018, Google DeepMind
uncovered AlphaFold, a DL pipeline that uses several different neural networks to predict the structure
of a protein given a sequence input. It does this in a series of steps that includes comparing the test
sequence to alibrary of known sequences and structures, guessing reasonable conformations for
subsets of the input protein, combining the guesses together in different ways, and then figuring out
what the best-guess shape is. The accuracy of the results roughly doubled the trend of progressin
the field.2° In this case, Al helped researchers get closer to achieving their goal of understanding a
protein’s shape based onits structure, which would be of tremendous value for rational drug designin
which molecules are generated to target specific geometries of specific molecular entities.

SGovindarajan, S. & Goldstein, R. A. On the thermodynamic hypothesis of protein folding. Proc. Natl. Acad. Sci. 95, 5545-5549 (1998).
"Dobson, C. M. Protein folding and misfolding. Nature 426, 884-890 (2003).

8 AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 35, 4862-4865 (2019).

9Evans, R. et al. De novo structure prediction with deep-learning based scoring. Thirteen. Crit. Assess. Tech. Protein Struct. Predict.
Abstr. 1-4 (2018).



Drug development

A particularly active area for Al within health is the drug development process, with the number of
funded startups active (currently at about 186) in this sphere growing about 400% between November
2017 and January 2020.° The opportunities for application of Al span the entire development pipeline,

from fundamental chemical reactions to experimental design to identification of new therapies.
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In 2019, scientists at Pfizer and researchers at
the University of Cambridge developed a neural
network that could make synthesis predictions
for pharmacologically relevant compounds. Their
tool works both for the problems of reaction
prediction (forward from reactants to products)
and retrosynthetic analysis (backward from
products to reactants), and their method beat
professional human chemists by achieving an
accuracy of about 90% for well-represented
reactions (versus about 80% human accuracy).
Much like the AlphaFold network learns protein
folds from protein sequences, this reaction
network learns the properties of specific
reactants that lead to specific products, and vice
versa, leveraging the large amount of knowledge
generated by organic chemistsin the past

few centuries!™? By automating the design of
chemical reactions, Al could help pharmaceutical
companies design drug syntheses and optimize
drug production processes.

Onamore applied level, in 2018 a team of
researchers from the Universities of Cambridge,
Manchester, and Aberystwyth discovered

novel antimalarial properties of triclosan, an
antibacterial compound found in products

such as toothpaste. This was achieved using an
Al-powered robot named Eve that automated
the scientific process by using ML to generate
hypotheses, run automated experiments in yeast
cells, and analyze the results. Behind the scenes,
Eve uses data from positive experiments (hits)
torunlinear regressions and learn quantitative
structure-activity relationships that quantify
acompound’s activity in a specific assay,
givenits chemical properties such as size or
hydrophobicity. Triclosan works by inhibiting two
different malarial enzymes, including one that is
the target of the current standard-of-care drug

pyrimethamine. These two different mechanisms
of action render triclosan a “polypharmacologic”
compound since it can target the malaria
parasite at both the blood and liver stages of

its life cycle. There is a growing need for such
new therapeutic discoveries as drug resistance
against standard medicines, like pyrimethamine,
grows in endemic regions such as Africa®*

As a final example, BERG, a clinical-stage
biotechnology startup near Boston, identified
acandidate drug for advanced pancreatic
cancer thatin November 2017 was awarded
orphan-drug designation by the Food and Drug
Administration (FDA) and in summer 2019
completed a Phase 2 trial. This drug works by
undoing metabolic changes associated with
cancer at the cellular level to restore normal
energy pathways, thereby turning normal
protective mechanisms such as apoptosis
(controlled, prophylactic cell death) back

on. BERG has developed a technology that
combines huge amounts of patient sample data
(including genomics, proteomics, metabolomics
and lipidomics) with medical data such as EHR
information to learn patient-level biological
graphs using a technique called Bayesian
networks. From these graph representations

of patients, the team can identify disease
biomarkers and critical molecules against which
they can virtually screen therapies for toxicity
and efficacy by seeing where the biological
networks tend to bunch up or by seeing how
diseased networks differ from healthy networks.
Through their Al-based pipeling, then, they can
reverse the hypothesis generation framework
by going from patient-level results to biological
mechanisms that, because of their empirically
derived natures, are likely to succeed in the
clinic’e-®

10 Smith, Simon. 186 Startups Using Artificial Intelligence in Drug Discovery. BenchSci. https://blog.benchsci.com/startups-using-artificial-intel-

ligence-in-drug-discovery (2020).

"Schwaller, P. et al. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Cent. Sci. 5,1572-1583

(2019).

2|ee, Alpha A. et al. Molecular transformer unifies reaction prediction and retrosynthesis across pharma chemical space. Chem. Commun. 55,

1215212155 (2019).

® Bilsland, E. et al. Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biol. 3, 120158 (2013).
“Bilsland, E. et al. Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan. Sci. Rep. 8,1038

(2013).

% Al'scientist’ finds that toothpaste ingredient may help fight drug-resistant malaria. University of Cambridge Research News. https://www.
cam.ac.uk/research/news/ai-scientist-finds-that-toothpaste-ingredient-may-help-fight-drug-resistant-malaria (2018).

®Zhang, L., Rodrigues, L. O.,Narain, N. R. & Akmaev, V. R. bAlcis: A Novel Bayesian Network Structural Learning Algorithm and Its
Comprehensive Performance Evaluation Against Open-Source Software. J. Comput. Biol. 26, 1-11 (2019).

7Our Approach. BERG https://www.berghealth.com/research/healthcare-professionals (2020).

®Hendifar, A. E. et al. Phase | study of BPM 31510 in advanced solid tumors: Updated analysis of a novel treatment with promising activity. J.

Clin.Oncol. 30,3015-3015 (2012).
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Al for
predicting
disease and
improving care

Moving up to the person scale, Al is increasingly _
being applied to the patient experience, }E{ F{ —_—)

including risk prediction, diagnosis, and @@?62 B— x‘ﬁj@
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from trained providers.

Diagnostics and outcomerisks

In April 2018, the software system IDx-DR became the first fully autonomous Al system to gain

FDA approval. IDx-DR reads patient eye scans and calculates the probability that the scans show
evidence of diabetic retinopathy, a disease of the small blood vessels in the eye due to diabetes and
the leading cause of blindness for working-age Americans. The software triages patients into a high-
risk group, who are then referred to ophthalmic specialists, and a low-risk group, who are scheduled
for rescreening in a year. Much like an ophthalmologist, the algorithm functions by learning how to
read pictures of retinas and what features of the scans indicate disease by using a convolutional
neural network. With 30 million Americans suffering from diabetes, and about 30% of them affected
by diabetic retinopathy, being able to accurately score patients onrisk results in greater efficiency of
specialty care for only those who require it!%2°

Another application of Al-based diagnosis is fromintegration with IoT devices, namely the Apple
Watch. Researchers at the University of California, San Francisco in 2018 conducted experiments to
see if this wearable coupled with a deep learning app could diagnose atrial fibrillation (AF). AF is an
anomalous heart rhythm and is the leading cause of stroke. Traditional diagnosis involves a 12-lead
electrocardiogram read by a specialist, but the study authors showed that using heart rate and step
data from the watch sensor could train a recurrent neural network to be able to identify AF episodes.
Here the software teaches itself to read heart scans from lots of patient scans, finding both normal
cardiac patterns and anomalies associated with AF.2' By moving the point of care from the clinic to
wherever the patient is, Al can deliver the benefits of constant monitoring of at-risk individuals without
incurring the costs associated with traveling to, and being seen by, scarce medical providers.

9 FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. U.S. Food and Drug Ad-
ministration. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-based-device-de-
tect-certain-diabetes-related-eye.

20Gulshan, V. et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus
Photographs. JAMA 316, 2402 (2016).

2 Tison, G. H. et al. Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch. JAMA Cardiol. 3, 409 (2018).
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Alis also being used to calculate the risk of
patients developing certain conditions. One
example comes from the field of cardiology:
scientists at the University of Nottingham in 2017
were able to use EHR data and demographic
information on patients to predict the risk of
cardiovascular events. They tried several of
the standard ML techniques, including logistic
regression and neural networks, with the latter
being the most successful, and all beating

the standard algorithm used by the American
College of Cardiology.?? While preliminary,
these results demonstrate that the information
presentin clinical notes, combined with social
determinants of health, can teach relatively simple
models to be as predictive as trained experts

in triaging patients. Freeing up specialists' time
by performing preliminary triaging, scaled up
by adoctor’s entire patient load, can have real
measurable impact on provider economics and
efficiency by increasing the time, and hence
quality of care, the provider is able to deliver to
their most at-risk patients.

Personalized medicine

Developments in genomics and medicine in

the past century have highlighted the fact that
many disorders, including rare and genetic
diseases, are not responsive to traditional one-
size-fits-all therapies. In other words, the same
drug on two different patients presenting with
similar symptomologies can have very different
effects. Furthermore, quickly mutating diseases
such as aggressive cancers or antibacterial-
resistant infections require new interventions

as the disease evolves. To meet such needs,
personalized (or precision) medicine has evolved
to provide targeted therapies that work for
specific patient situations. The fundamental
challenge of personalized medicine is to predict
or develop the most effective intervention, given
data (medical history, diagnostics, omics, etc.)
about a patient and their disease. As such, Al finds
natural applications here.

Alcoholism poses a major burden, affecting about
5% of the global population, yet its psychiatric
etiology is complex and not completely
understood. There are currently only a handful

of medicines that are approved to treat alcohol

dependence, but none are extremely effective at
alarge scale. As an application of personalized
medicine, researchers at the Mayo Clinic
performed a study in 2017 in which they used
ML to tie patient metabolomics to their likelihood
torespond to acamprosate, one of the drugs
approved for treatment of alcoholism. They
measured patient demographics, metabolite
levels, and baseline alcohol cravings before
treatment, and then correlated these variables
to the probability of response to treatment by
using logistic regression. The study was able
to generate predictive models with reasonable
predictive power and showed that levels of

the amino acid aspartate was a consistently
good predictor of treatment effectiveness.?®
This study demonstrates that Al can generate
useful personalized predictions about patients’
individual responses to interventions, thereby
increasing quality of care by avoiding spending
time and money on therapies unlikely to be
effective.

In 2011, the U.S. Department of Veterans Affairs
(VA) launched the Million Veteran Program,

an effort to collect genomic information on
amillion veterans so that these data can be
correlated with information on military service,
lifestyle, and medical care to better understand
the interplay between genotype, environment,
and phenotype. As the United States’ largest
integrated health system and the world’s largest
collector of genomic data linked to health

data, the VA has offered the Al community a
tremendous opportunity, and recently efforts
have started to pay off. In 2018, researchers
from around the world representing institutions
such as Harvard, Stanford, and Cambridge
Universities worked with VA scientists to help
link genomic data on hundreds of thousands of
veterans to their lipid levels, gleaning key insights
into genetic underpinnings of cardiovascular
and metabolic diseases. Several ML techniques
were used in this work, including principal
component analysis (PCA) to deal with the

vast amounts of data present in a patient’s
genome. By representing patient ancestries as
PCA-reduced variables of genomes, combined
with lab results on lipid levels, EHR records of

22Weng, S.F., Reps, J., Kai, J., Garibaldi, . M. & Qureshi, N. Can machine-learning improve cardiovascular risk prediction using routine

clinical data? PLOS ONE 12,e0174944 (2017).

23Hinton, D. J. et al. Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects. Sci. Rep. 7,

2496 (2017).
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Al for
optimizing
clinical
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cardiovascular disease, and demographic data, the team was able to use logistic regression to extract
the effects of specific genetic mutations on coronary artery disease (CAD). They identified that the
inactivation of one gene, PDE3B, was associated with lower risk of CAD. The effects of inactivating this
gene are strikingly similar to the molecular mechanism of action of cilostazol, a drug that is approved
by the FDA for the treatment of insufficient blood flow in the legs, but not for CAD. By making this
connection, uncovered through ML technigues on genomic and health data, the researchers then
suggested that cilostazol may be a therapeutic possibility against CAD,?#%> and recent clinical studies
have emerged with results supporting this hypothesis.?%?” This case study shows the potential of
applying Al to linked genomic and health data to understand at an individual level the genetic driving
forces behind disease, and further to generate new drug candidates from existing medicines.

The last level of scale we consider here is the group, or how Al can support cohort and population
outcomes. Two areas of development include clinical trials and public health; in each of these contexts,
Al models are being used to make sense of complicated, disparate sets of data about individuals to
make predictions that can benefit larger groups.

Clinical trials

Clinical trials are an enormous business operation: In 2013, Phase 3 trials in the United States

alone cost around $10 billion. The FDA approval process is strict and rigorous for good reason, but
this means that each new therapy costs about $1.5 billion-$2 billion to bring to market when one
accounts for R&D costs and the costs of failed trials. In the end, only 10% of candidate therapies
that make it to Phase 1 make it to market, and one of the major factors for trial failure is the inability to
recruit enough eligible patients who do not attrite before trial completion.?82°

Clinical Trials

ok Trial NCT xxxx Patients Protocol Optimized
Hypothesis... Trial Inclusion... 1. Patient
Phase.. Design Exclusion... 2... Recruitment g
Treatment... — Protocol... 3. 8
Target patients... g”te.”a Target patients... @
arsing é é é 6 & 6 é 6 é & Treatment Placebo

24 Million Veteran Program (MVP). U.S. Department of Veterans Affairs. https://www.research.va.gov/mvp/ (2017)

#Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514-1523
(2018).

%6 ee, D.-H. et al. Effect of cilostazol, a phosphodiesterase-3 inhibitor, on coronary artery stenosis and plaque characteristics in patients with
type 2 diabetes: ESCAPE study. Diabetes Obes. Metab. 21,1409-1418 (2019).

27Chao, T--H. Tseng, S--Y., Liu, P.-Y. & Li, Y.-H. P1929 A randomized controlled trial evaluating outcome impact of cilostazolin patients with
coronary artery disease and at a high risk of cardiovascular disease. Eur. Heart J. 40, ehz748-0676 (2019).

% Harrer, S, Shah, P., Antony, B. & Hu, J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol. Sci. 40, 577-591(2019).

2 Fogel, D. B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp. Clin.
Trials Commun. 11,156-164 (2018).
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The United States has a central repository of all
clinical trials, clinicaltrials.gov, but this resource
doesn’t translate directly into streamlined
enrollment, in part because the inclusion/
exclusion trial criteria are in free text, use medical
jargon, and do not follow a standardized ontology.
To address these problems, researchers

at Janssen Pharmaceuticals and Columbia
University used natural language processing
(NLP) technigues to develop the Criteria2Query
algorithm, which takes as input a free-text
description of clinical trial eligibility and outputs
astandardized collection of entities (condition,
drug, measurement, procedure, or observation),
attributes (values and time occurrences) and
negation statuses (whether presence of the
entity/attribute pair determines eligibility or
ineligibility). For example, inputting “13-15 years
old” would yield an eligibility entity of “age” with
value attributes “13-15 years.” The algorithmalso
decodes medical abbreviations and can go from
a free-text description to a standard ontological
entry. For example, “AD” maps to “Alzheimer’s
Disease” and then matches the International
Classification of Diseases-Tenth Revision (ICD-
10) code G30. Criteria2Query does this through
anintricate set of NLP steps, including paragraph
and sentence parsing, named entity recognition,
negation detection, relation extraction, logic
detection, and attribute normalization.*° By using
Alto translate unstructured criteria defining each
of the many clinical trials into well-formatted and
standardized outputs, tools can be developed

to help patients and providers find experimental
treatments through large-scale querying of
available trials.

Besides simply cleaning and understanding
eligibility criteria, a major challenge of trial design
is the actual matching of eligible patients to
relevant trials. Deep 6 Al is a California-based
startup working to address this need. Its team
accomplishes this by using NLP and ML to sift
through data buried in patient health records,
analyzing both structured (diagnosis codes,
procedure codes, etc.) and unstructured (doctor
notes, pathology reports, etc.) information to
reconcile disparate sources of health indicators
into one multidimensional representation of the
clinical state of a patient. Having a collected

view of a patient then allows them to identify
possibilities for intervention, including for
conditions not present explicitly in patient data.
Their algorithms match these opportunities

to currently available trials, thereby greatly
speeding up the patient recruitment process;in
one hour they were able to find 16 subjects for a
trial, whereas a typical recruitment process had
taken six months to find two patients.3*2

A last example in the context of clinical

trials is the application of Al to design of the
interventions themselves. Clinical trial design
involves many simultaneously moving parts,
such as defining appropriate subject inclusion/
exclusion criteria or trial endpoints. These
choices are often delicate balancing acts: for
example, if a trial's eligibility is too strict, not
enough patients will be recruited and hence
intervention significance will be difficult to
attain because of low statistical power. On the
other hand, if the eligibility is too lenient, the
trial will be flooded by subjects who may not
respond as predicted and significance will be
difficult to attain due to seemingly low effect
size, in addition to increased trial costs. As
aresult, an efficacious drug may appear not

to be efficacious. To address this, a startup
called trials.aiin San Diego is using ML and
NLP techniques to optimize the design of the
trial protocols. Their product mines data such
as published journal articles and proprietary
pharmaceutical or medtech client data to, for
example, suggest appropriate thresholds for
patient recruitment criteria.3'33By being able to
fine-tune clinical trials to optimize economics
and design for the most relevant patient
populations, Al has the potential to help new
drugs get to market faster and cheaper.

%0Yuan, C. et al. Criteria2Query: a natural language interface to clinical databases for cohort definition. J. Am. Med. Inform. Assoc. 26,

294-305 (2019).

3"Woo, M. Trial by artificial intelligence. Nature 573, S100-S102 (2019).

%2 How It Works. Deep 6 Al https://deep6.ai/how-it-works (2020).
3 How We Do It. Trials.ai https://www trials.ai/ (2020).



Public health
The potential use cases for Al in health do not stop at the cohort level — they can also be applied to
much larger groups such as city, or even national, populations to assist public health efforts.

Public Health

Potential
Violation

Cases

Time
— Historical
------ Forecast

Google teamed up with researchers from Harvard and the public health departments of Chicago
and Las Vegas between 2016-2017 to predict sources of food-borne ilinesses and identify health
violations in restaurants from Google search queries. To do so, the team created a two-step

model. In the first step, a model uses NLP to encode the search strings followed by supervised ML
classification to predict whether the query was about food-borne iliness. In the second step, the
model uses location data from opted-in users to estimate which restaurants the user had visited.
Combining the web search with the location model, and aggregating over all the unique users,
allowed for a prediction of which restaurants were correlated with searches likely to indicate a
food-borne pathogen. Leveraging these predictions, both public health departments increased their
inspection efficiency by more than a factor of 2 over their typical routine site inspection processes.3
Public health departments are often underfunded and understaffed, so unlocking such efficiency
gains with Al can provide measurable benefits to the community by freeing up public health officials
to focus their time on other high-impact activities.

Al methods have also found application in epidemic surveillance and forecasting. Through their
FluSight challenge, the U.S. Centers for Disease Control and Prevention (CDC) has teamed up with
academic and commercial partners to use influenza incidence data collected at reporting sites
across the country to forecast the flu season. The winning team in the 2018 season was a group
from the U.S. Department of Energy’s Los Alamos National Laboratory that used Bayesian statistical
models of flu infection time series to learn trends at the various geographical levels. Importantly,
their model was able to beat the other competitors, some of whose models used additional data
sources, without incorporating orthogonal information such as weather patterns or web traffic. This
demonstrates that historical information, combined with innovative ML, is sufficient to generate
actionable public health predictions and provide huge value to constituents. The ability to forecast
influenza spread can allow the CDC to optimally time vaccination drives, prepare antiviral supply
chains ahead of peak clinical need, and dynamically allocate resources to regions of the country
most at risk for epidemic.3536

34 Sadilek, A. et al. Machine-learned epidemiology: real-time detection of foodborne illness at scale. Npj Digit. Med. 1,36 (2018).
% FluSight: Flu Forecasting. U.S. Centers for Disease Control and Prevention https://www.cdc.gov/flu/weekly/flusight/index.html.
%6 QOsthus, D. & Moran, K. R. Multiscale Influenza Forecasting. ArXiv: 1909.13766 [stat. AP] (2019).
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Atits core, Al is a family of methods that find patterns in, and make predictions about, data. Advances
in the biomedical sciences have vastly increased the scale and variety of data available in the health
and life sciences sectors, while parallel advances in data science and computing have created new
algorithms to process, analyze, and extract measurable insight from various sources of information.
While there are very real challenges to overcome when working with health data, the potential for Al
to advance medical knowledge and care is vast and present at all scales, from the molecule to the
community. By leveraging Al, providers can triage patients to focus their time on more difficult cases,
life scientists can discover new medicines, patients can find relevant clinical trials, and public health
agencies can more proactively serve their constituents. We have provided here examples of all these
applications of Al from the past five years, and we anticipate that opportunities for Al to improve health
will continue to grow and develop in the near future.

While there are many exciting developments underway and on the horizon for Alin health, itis
important to realize that Al is not a panacea. Namely the following limitations are especially important to
keep in mind:

Biology will not be fully solved by models. Models can only find patterns in already observed
measurements or correlate historical inputs with outputs, so they will never displace the critical
role that researchers have in generating and testing novel scientific hypotheses.

Clinician expertise and experience will not be supplanted by robot doctors. Medical care
demands empathy and a mastery of understanding all aspects of the situational nuances of each
patient; no model can ever replicate these skills that experience in patient care alone can provide.

Patient health trajectories will not be fully and perfectly predictable. An individual's
environment and their personal choices are a priori unknowable but carry tremendous weight
in affecting their health, implying that computational algorithms will never be able to produce
deterministic, exact forecasts.

Al models will not be fully explainable. Often the most sophisticated, powerful Al models
suffer from alack of transparency in how exactly they use data to make predictions; in health this
is a salient shortcoming, as it is difficult to intervene if the root causes of a disease state are not
known.

Al technology will not be free of bias or equitably accessible. The output of an Al model
always reflects the input data, so model forecasts necessarily reflect the biases inherent to the
data being collected; put another way, until medical care is equally accessible to all, Al tools
will only accurately predict outcomes for those populations able to access care and generate
training datain the first place.



Despite the limitations of the above points, Al is well-poised to address many current needs in
medicine and the life sciences. We believe the following use cases in particular will benefit from the
application of Al:

New, different data will provide a more holistic view of patients. Developments in deep
learning especially are increasing the kinds of data that are analyzable (text,images, sounds,
time-series, etc.), and an increasing focus on health data quality and interoperability will make it
easier to connect different dots of a patient’s journey together into a multidimensional picture of
health.

Algorithms will triage patients into risk groups, thereby more efficiently allocating care
and augmenting provider judgment. FDA approvals for diagnostic algorithms will increase, and
these tools will optimize the medical care supply chain by routing patients to the appropriate level
of treatment and specialization; furthermore, they will interface with EHRs to highlight particular
risk areas, help providers follow ever-evolving standards of care and place importance on
specific areas of preventive care that could prevent especially likely future illness.

Old drugs will be repurposed for new indications. The explosions in granular data on patient
phenotypes and our increased understanding of microscopic biochemical pathways will help life
scientists revisit existing therapies in the context of new diseases to use old drugs in new ways.

New, more precise medications will come to market more quickly and cheaply. The
increased resolution in patient biomarkers will enable drugs to be developed for specific disease
state subpopulations, and improvements in clinical trial design will push these new interventions
to the clinic more easily.

Pharmaceutical interventions will be judged by their effectiveness, not their efficacy. With
more specific trials being undertaken and more real-world evidence being available, the success
of a treatment will be determined not by whether a trial can be designed to demonstrate its

effects, but rather by whether its introduction to the market positively impacts population health.
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