
The Application Factory  1 

A comprehensive  
approach to building,  
modernizing, and integrating  
purpose-built applications

Five Key Reasons to Implement  
the Application Factory

Organizations have struggled for decades with 
effective software development and delivery. 
Today, the challenges of unbridled application 
proliferation are exacerbated by the need to 
consolidate and streamline while continuing to 
develop new capabilities to meet ever-changing 
business demands. The average large organization 
reported 976 individual software applications in the 
2022 Connectivity Benchmark Report published by 
MuleSoft Research.1 A consistent and automated 
approach to application development is necessary 
to reduce cost and complexity, while increasing 
operational agility and application quality. 

Current disconnects among business needs, 
operational requirements, and technical constraints 
stem from a plethora of root causes related to 
underlying architecture that predates many of 
today’s technologies and requirements. The resulting 
challenges include issues with security, quality, 
reliability, usability, scalability, interoperability, 
maintainability, and portability. Additional 
contributors to these challenges include variations 
in software development processes, tools, and 
languages; the lack of a single source of truth 
for underlying data; the absence of automated 
integration between software applications; and the 
underlying complexity of software applications we all 
use every day.

The symptoms of these issues include: 

•	 An inability to respond quickly to changing business 
demands.

•	 A lack of visibility into numerous attack vectors that 
compromise security.

•	 High costs just ‘keeping the lights on’ for operations and 
maintenance.

•	 Inefficient user experiences overly dependent on swivel-
chair manual processes.

•	 Inconsistent data and duplicate databases, creating silos 
and blame.

guidehouse.com

The Application Factory



guidehouse.com The Application Factory 2 

To meet these challenges, many enterprises are turning to the concept of an application factory. Application factories 
deliver significant benefits to large organizations in terms of agility, productivity, scalability, and cost-effectiveness. 
Guidehouse’s innovative approach combines best-in-class modern low-code platforms and web services. This proven 
methodology has helped multiple federal agencies, deliver highly successful, award-winning programs that exceeded 
expectations throughout the software life cycle.

The auto industry learned more than a century ago that independent function-built components have many advantages 
over components that serve multiple purposes. A loosely coupled architecture of small reusable components, capable of 
interacting via standardized interfaces, made it possible for the same component to be used on multiple cars, simplified 
final assembly, allowed for the outsourcing of work to more cost-competitive suppliers, and created an entire replacement 
parts industry that resulted in higher quality for end users and higher profits for car manufacturers. The same benefits 
come from applying a true component-based approach to software application architectures as described so eloquently 
20 years ago in Clemens Szyperski’s book, Component Software: Beyond Object-Oriented Programming2, which was 
foundational in shaping the modern concept of web services.

Modular components, and the development process that creates them, allow teams or individuals to work independently 
on smaller, manageable components—and for those components to be updated independently in production with a minimal 
impact footprint. This decoupling of services facilitates faster development cycles, shorter time to market, and the ability 
to iterate and adapt applications quickly. Matthew Skelton and Manuel Pais call this model X-as-a-service (XaaS) in their 
book, Team Topologies3. Of the three models they consider, it is the best at supporting disconnected development teams 
that are part of different departments or even different organizations, as is the case when consuming commercial web/data 
services that provide little to no interaction between service development teams. 

Service design requires an intimate understanding of multiple use cases, clear boundaries (which modern representational 
state transfer (REST) APIs provide) and automated tests to ensure that changes to the service do not adversely impact 
end users. One drawback of a 100% component-based (or, in modern terms, web-service-based) architecture is the added 
burden of system integration. Guidehouse’s application factory model addresses this by using standards-based integration 
patterns and leveraging low-code application platforms.

The Application Factory



guidehouse.com The Application Factory 3 

Low-Code 

Low-code platforms can significantly reduce 
the need for custom integration because all 
the components and modules provided with 
the platform are designed to work together. 
This platform-as-a-service (PaaS) approach 
provides visual development interfaces, prebuilt 
templates, and drag-and-drop functionality, 
enabling citizen developers and IT professionals 
to create new applications and extend existing 
ones with minimal coding effort. In fact, the move 
from custom coding to a ‘select-and-configure’ 
approach is widespread through all sections of 
software development. It started with shared 
libraries back in the early 1970s and continues 
today with the emphasis on user interface 
configuration to shape behavior as an alternative 
to custom code.  

The democratization of development provided 
by low-code platforms allows organizations to 
optimize their resources by involving business 
users in application development, reducing the 
burden on IT teams, and accelerating time to 
market. Two of the leading platforms ServiceNow 
and Salesforce both started as purpose-built 
applications but quickly evolved into application 
platforms, while others, like Appian and Microsoft 
Power Platform, were created to be general-
purpose application-building platforms. 

Low-code platforms do have their drawbacks, 
including vendor lock-in and a monolithic 
nature. Guidehouse’s application factory model 
addresses this by combining the flexibility and 
customizability of web service components with 
the agility of low code, providing a ‘right tool for 
the job’ best fit. 

Component-Based Services  

Web service-oriented component architectures 
play a vital role in enabling scalability and 
resilience within an application factory. Large 
organizations can scale individual services 
based on demand, allowing them to handle high 
volumes of users and data without compromising 
performance. Additionally, these services offer 
fault isolation, preventing failures in one service 
from affecting the entire system. 

This modular approach to development enhances the robustness 
and resilience of applications, ensuring continuous availability 
and reducing the risk of widespread failures. Applying the 
application factory to deliver architectures that allow web 
services to meet specific business needs, while integrating those 
services with low-code application platforms, achieves agility  
and reuse without sacrificing flexibility.

AI/ML Web Services

There are numerous web services available from Amazon Web 
Services (AWS), Microsoft Azure, and others that can be used 
as key components of your applications. These include many 
prebuilt artificial intelligence services (AIaaS) and machine 
learning services (MLaaS).  One example of the hundreds of AI 
services available is Amazon Polly, which uses deep learning 
capabilities to generate speech that sounds like a human voice, 
providing your applications with the same technology used in 
Amazon’s Alexa. SageMaker is a powerful MLaaS for building, 
training, and deploying machine learning models, and Azure 
OpenAI Service includes large language generative AI services 
with enterprise-class controls and security.  

These represent a very small sample of the thousands of web 
services available. When an existing web service cannot meet a 
specific and/or proprietary need, microservices can fill the gap.



guidehouse.com The Application Factory 4 

Microservices  

Microservices are reusable self-contained software 
components that handle unique business capabilities. 
They can be built, and function, totally independently of 
each other, which makes them ideal building blocks for 
custom development within our application factories.  

The advantages of microservices include fault tolerance 
through isolation and redundancy. When built using 
containers (Docker/CRI-O) and Kubernetes (OpenShift, 
Rancher, Amazon Elastic Kubernetes Service, Azure 
Kubernetes Service, etc.) microservices provide fault 
tolerance, security, and high availability, while overcoming 
many of the challenges of managing and orchestrating 
containerized services that can scale to hundreds or even 
thousands.  

One goal of microservices is to encapsulate data along 
with business logic and algorithms. The containerization 
of databases is a powerful tool to address the need 
for a separate data store for each service. Guidehouse 
pioneered the containerization of both Relational 
Database Management Systems (RDBMS) and NoSQL 
document stores, with multiple federal agencies.  

Unlike shared libraries (Java, C#, C++, and others), 
microservices are fully contained, loosely coupled, 
and easily integrated, upgraded, and replaced without 
requiring any rebuilding (compiling/linking) during the 
integration phase. This agility increases interoperability 
without having to deal with any special dependencies 
related to the connecting service or application. 
Language-specific shared libraries and modules are by 
no means eliminated using microservices. They are just 
contained within the microservice itself.  

As the name ‘container’ implies, these services 
are isolated from other services and processes. A 
containerized architecture improves security, portability, 
testability, upgradability, understandability, scalability, 
and interchangeability, while reducing redundancy. 

Data Services

There is a plethora of data available on the internet, 
including public data sets on AWS, Google Public Data, 
Snowflake Marketplace, Databricks Marketplace, and 
Data.gov.

In addition, proprietary data services can be developed 
and secured, providing data that serves multiple 
applications and even other services. While static 
datasets can be downloaded and consumed, the real 
power of data comes from using live datasets consumed 
through REST APIs. Webhooks provide notification of 
change events in a data set, triggering client services to 
perform the necessary actions in a prescriptive fashion,  
as opposed to a complete ETL (extract, transform, load), 
on a timebound schedule.  

All data services offer the key advantages of providing 
up-to-date data and facilitating changes to that data for 
all who consume it. This single source of truth is vital for 
any data set that needs to be appended or updated. When 
required historical lookback can be provided on demand 
to provide detailed trend analysis.   

As with any third-party tool or technology, make sure to 
read and review the licensing agreements and restrictions 
on the usability of these datasets, including the ones 
promoted as free/public, to avoid any legal issues in  
the future. 

Unlocking Efficiency and Innovation

Foundational to a successful application factory is the 
right combination of  
people/culture, processes, and technology. Each is of 
paramount importance at  
a different phase, but this three-legged stool cannot stand 
without all three  
pieces in good working order.  

Culture

A culture of respect, innovation, integrity, mentorship 
and excellence is vital in supporting rapid change and 
the consolidation of efforts required by an application 
factory. Blame is the enemy. As Dale Carnegie highlighted 
in the beginning of his 1936 book, How to Win Friends and 
Influence People4, when  
you instigate a cycle of blame you are causing more 
damage to yourself. The tendency for software teams 
to create enemies of other departments, unfamiliar 
technologies, and commercial software/service vendors 
is all too common. When problems arise, the appropriate 
individuals must first be held accountable for clearly 



guidehouse.com The Application Factory 5 

clearly defining the issue (ideally in an Agile tracking system). Then 
leadership must ensure the correct people are brought together to 
collectively resolve the issue.  

Formal retrospectives are vital and must include all relevant stakeholders to 
be effective. Once again, these processes should not seek to assign blame 
but to identify successes, issues and corrective actions that should be taken 
in the future to prevent the issue from occurring again.  Follow-up is required 
to guarantee that the issues have been addressed. 

The division of responsibility between low-code developers and web service 
developers minimizes the need for excessive communication between teams.  
This is effective only if the customer and product owner for each component  
are well-defined. Frequent reminders of two of the laws of software 
development are vital in maintaining focus: First, know your customer and 
second, you are not the customer.  

Agile methodologies and specifically DevOps processes provide codification 
and standardization of cultural best practices, shaping the guardrails for 
behaviors while providing automation that improves delivery velocity, 
security, and quality. 

Process

By utilizing DevOps principles, such as continuous integration and 
continuous deployment (CI/CD), the application factory streamlines 
development, testing, and deployment workflows. This automation 
reduces manual effort, minimizes errors, and fosters collaboration among 
development, operations, and quality assurance teams. Consequently, 
developers can focus more on innovation, leading to accelerated delivery of 
high-quality applications. 

DevOps practices bring developers, operations teams, and quality 
assurance specialists together, enabling seamless collaboration and shared 
responsibility throughout the application life cycle. This collaboration 
promotes knowledge-sharing, improves communication, and allows for rapid 
feedback loops, leading to faster problem-solving and innovation.

The application factory environment also encourages experimentation and 
the adoption of emerging technologies, driving continuous improvement, 
and enhancing the organization’s competitive edge. Having isolated lab, dev, 
test, and production environments, at a minimum, is vital for reaching the 
level of quality, availability, and security that all modern software consumers 
demand.  

As with any change to your organization, it is vital to start small, and gain 
trust and buy-in at all levels by delivering working software, or at least a 
demo, biweekly, or preferably weekly where possible. This approach offers 
great opportunities to solicit feedback from all stakeholders and continuously 
improve, building upon early wins by increasing velocity and value, along 
with the number of scrum teams.



© 2023 Guidehouse Inc. All rights reserved. This content is for general information purposes only, and should not be used 
as a substitute for consultation with professional advisors. GH-256_c Application Factory

Contacts
Jerry Eshbaugh, Director 

Low-Code
jerry.eshbaugh@guidehouse.com 

About Guidehouse
Guidehouse is a leading global provider of consulting services to the public sector 
and commercial markets, with broad capabilities in management, technology, and risk 
consulting. By combining our public and private sector expertise, we help clients address 
their most complex challenges and navigate significant regulatory pressures focusing on 
transformational change, business resiliency, and technology-driven innovation. Across 
a range of advisory, consulting, outsourcing, and digital services, we create scalable, 
innovative solutions that help our clients outwit complexity and position them for future 
growth and success. The company has more than 17,000 professionals in over 55 locations 
globally. Guidehouse is led by seasoned professionals with proven and diverse expertise 
in traditional and emerging technologies, markets, and agenda-setting issues driving 
national and global economies. For more information, please visit guidehouse.com. 

linkedin.com/showcase/guidehouse-technology-solutions/

@GHtechsolutions

guidehouse.com/services/digital-technology

Technology 

Application programming interfaces (APIs) are the 
principal mode of communication between applications 
and component-based services. The primary method for 
consuming these APIs is representational state transfer. 
REST has many advantages, including its widespread 
popularity and the fact that it uses the most popular internet 
protocol, HTTPS. Any service or application that can access 
the internet can publish and consume REST APIs.  

Message buses like Amazon Simple Notification Service, 
Azure Service Bus, and Kafka, to name just a few, provide 
an integration pattern that works much like an FM radio. 
Applications and services can tune into various channels 
and listen for broadcasts based on their interests. This is 
a great way to have one-to-many communications. One 
common use case is advanced notification of a shutdown 
of a service, so dependent applications are aware of what 
is coming and can respond accordingly by implementing 
backup/failsafe processes.  

There are other integration methods—including direct 
database connections (for example, JDBC/ or ODBC); 
robotic process automation (RPA), which is a user-interface-
based integration pattern; and legacy Simple Object Access 
Protocol (SOAP), and Remote Procedure Calls (RPC), etc. 
But REST and modern message buses have emerged as the 
preferred methods for long-term, persistent, mission-critical 
architectures.

REST APIs are best suited for request/response (GET/
POST) interactions, and message buses are designed for 
notifications. Both have their place, but the most common 
integration patterns will primarily use REST when connecting 

distributed applications and services, while using message 
buses between a shared framework or platform. In fact, all 
low-code platforms use message buses internally, although 
only the most advanced platform developers are aware of 
this. REST APIs remain the most frequently used integration 
method within the application factory. 

Conclusion

The agility, productivity, scalability, cost-effectiveness, 
collaboration, and innovation fostered by the application 
factory provides a competitive advantage in today’s digital 
age. By embracing this model, enterprises can meet the 
demands of a rapidly evolving market and deliver high-
quality applications more quickly, maximizing time-to-value. 
The rapid delivery cycles built upon the foundations of Agile 
and DevOps methodologies provide improved alignment 
between customer needs and software delivery through 
a high-velocity feedback loop that takes the results from 
retrospectives conducted at the end of each sprint and 
feeds them into the very next sprint to support continuous 
innovation and improvement.  

As the digital landscape continues to evolve at an 
exponential pace, the application factory is vital in 
helping large organizations rapidly deliver award-winning 
applications that exceed customer expectations.

1 “70% of Organizations Do Not Provide Completely Connected User Experiences, 2022 
Connectivity Benchmark Report”, Mulesoft, 2022, mulesoft.com. 
2 Szyperski, Clemons, 1997,”Component Software: Beyond Object-Oriented 
Programming”, Addison-Wesley Professional; 2nd edition (Novermber 13, 2002).
3 Skelton, M. and Pais, M., 2019 “Team Topologies, Organizing Business and Technology 
Teams for Fast Flow”, IT Revolution. 
4 Carnegie, D., 2012 “How to Win Friends and Influence People”, Arrow (Random).

mailto:jerry.eshbaugh%40guidehouse.com%20%20?subject=
https://www.linkedin.com/showcase/guidehouse-technology-solutions/
https://twitter.com/GHTechSolutions
http://twitter.com/guidehouse
http://guidehouse.com
https://guidehouse.com/services/digital-technology

